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Introducion

This presentation is based on a published work

(Borzykh, 2018) Borzykh D. On a property of joint terminal distributions of
locally integrable increasing processes and their compensators // Theory of
Stochastic Processes. 2018. Vol. 23. No. 39 (2). P. 7-20).

| would like to thank my supervisor Prof. A. A. Gushchin for setting the
problem and useful advices.
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Our work is essentially based on A. A. Gushchin's article:

(Gushchin, 2018) A. A. Gushchin, The Joint Law of Terminal Values of a
Nonnegative Submartingale and Its Compensator, Theory of Probability
and lts Applications 62 (2018), no. 2, 216-235.
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In (Gushchin, 2018) a class W of probability measures on the space
(R%, B(R%)) is introduced.

It includes all measures p satisfying the following conditions:
1) fRi(X + y) p(dx, dy) < oo,
2) Jpa xpldx, dy) = [pa y u(dx, dy),
3) VAZ0: [, oy xnldx, dy) < fa (v AN u(dx, dy) -
It is shown in (Gushchin, 2018) that the joint distribution of terminal

values of an integrable increasing process and its compensator belongs to
the class W.

Conversely, given 11 € W there is constructed an increasing integrable
process such that the joint distribution of terminal values of the process
and its compensator is 1 and, moreover, the compensator is continuous.
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Thus, if X° = (X7)¢e[o; ) is an integrable increasing process with a
compensator A° = (A?)¢c[0: o0), One can define on a certain stochastic
basis another integrable increasing process X* = (X{):c[0, ) With a
compensator A* = (A})¢c[o: o), SUch that

Law (X, A%) = Law (X3, A%). (1)

Moreover, the compensator A* is continuous.

The main goal of the article is to extend the last statement to the locally
integrable case. Namely, we state the following theorem.
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Theorem (Main Theorem: Borzykh, 2018, Theorem 1.1)

For any locally integrable increasing process X° = (X{)¢e0; 0) With a
compensator A° = (A?)te[o;c) ON Some stochastic basis there exists
another locally integrable increasing process X* = (X{)¢ejo;00) With a

compensator A* = (A})te[o; ), Such that relation (1) holds, as well as A*

is continuous.
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In our further constructions we will need the following result.

Theorem (Gushchin, 2018, Theorem 2.1)

(i) Let X be a nonnegative submartingale of class (D), Xo = 0, with the
Doob—Meyer decomposition X = M + A into a sum of a uniformly
integrable martingale M and a predictable integrable increasing process A,
and let T be a stopping time. Then Law(Xt, A1) € W.

(i) Let p € W. Then on some stochastic basis there exists an increasing
process X with compensator A such that Law(X, Ax) = p-
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Definition

We shall call an adapted process X = (Xt)c[0:0) @ generalized increasing
process, if the process X; — Xp, t € [0; 0), is increasing process.
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Lemma (Extension Lemma)

Let a locally integrable generalized increasing process X° = (X{)¢c(0; 00)
such that E[X;] < oo, for any n € N, be given on a stochastic basis

B i= (@, 5%, B°, (3%)sefoson)), 31 A° = (A})eclg, o) eing its
compensator, i.e. A° is predictable process with right-continuous
nondecreasing trajectories such that the process (X; — Xg) — (A7 — A3),

t € [0; o), being a local martingale. Let also another integrable increasing

process X[l = (Xt[”])te[o; n] on a different stochastic basis
Bl .= (Ql, gl pln], (?£n])t€[0;n])r n € N, with a compensator
Alnl — (A[t"])te[o;,,] be given. Moreover,

aw (1250 ] [3]) =t (5] [6])-
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Lemma (Extension Lemma)

Then one can define a pair of processes X["t1] = (Xt["H])tE[O; nt1] and

Aln+1] — (A[t"+1])te[0;n+1] on a certain extension
B+l .= (Qlr+1] gln+1] pla+1] (?£n+1])te[o;n+1]) of a stochastic basis
(@l gl plol, (&”£"])t€[0; n)), satisfying the following conditions:

(i) X"t js an integrable increasing process, and process A"t is jts
compensator,

(ii) the processes (Xt["])te[o;,,] and (X,_["H])te[o;,,] coincide,

i) the processes Alnl tclo: o and Aln+1l tclo: nl coincide,
t Jtel0; n] t €[0; n]

Law X[EnJrl] X'[1n+1] X,E’fll] ~ Law Xg X° X2,
A£n+1] ’ ALn+1] ) ALT—ll] - A8 ’ Ag ’ AZ+1 ’

(v) process (A£"+1])t€[,,; n+1] s continuous.
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The proof of Extension Lemma goes along the same lines as the proof of
Lemma 3.1 in (Borzykh, 2018).

Dmitriy Borzykh HSE Locally integrable increasing processes November 25, 2020 13 / 26



Proof of Main Theorem

Let a locally integrable increasing process X° = (X;)¢c[0;00) and a
localizing sequence of finite stopping times (7,)52; be given. It can be
shown that without loss of generality one can assume that T, =n, n€ N
(for details see (Borzykh, 2018)).
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We start with the following recursive procedure.

Step 1. Applying Theorem 2.1 (i) (Gushchin, 2018) to the integrable

increasing process (X{)¢co: 1], as well as its compensator (A?)c[o;1] and a
stopping time T = 1, we get Law (X, A7) € W.

(Xiqo,m)
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Then by Theorem 2.1 (ii) (Gushchin, 2018), there exists a stochastic basis
B .= (Q[l], gl phl, (?il])te[o;l]), and an integrable process
(Xt[ll)te[o;l] on it with a continuous compensator (A[tl])te[o;u, such that
Law (X, A7) = Law (X7, A9).

(XD g0

e

( X’UJ oy € has continuous compensator
(= AL

=0 =1
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Step n = 2. Remark that the pair of processes (X;'):c[o; ) and

(A?)te[o;oo) and the pair of processes (Xl[l])te[o;u and (A[tll)te[o;l] fit the
requirements of Extension Lemma.

So, applying this lemma, we build a stochastic basis
B[zl = (Q[Z]v 9:’[2]7 P[2]’ (?i[le)tG[O;Z])’

and an integrable increasing process (X,_L[Z])te[og] with a continuous

compensator (A?])te[o;z], satisfying the condition

Lavw (X2[2], A[22]) = Law (X, A2).
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All the steps starting from the second are performed similarly.

Step n+1, n > 2. Remark that the pair of processes (X;):co, ) and

(A?)te[o;oo) and the pair of processes (Xt["])te[o;n] and (A[t"])te[o;,,] fit the
requirements of Extension Lemma.

So, applying this lemma, we build a stochastic basis

Bln+1l . (Q[n+1]’ FloH1] plo+1] (3r£"+1])t€[0;n+1]),

and an integrable increasing process (X,_L["H])te[o;,,ﬂl with a continuous
[n+1
t

compensator (A ])te[o;,,ﬂ], satisfying the condition

Law (X,Er:il]a Amjlll) = Law (X741, Ajya) -
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Now, we are ready to define the required stochastic basis
B* = (Q*v 3"*, IP)*’ (:}T)te[o;oo))

and a locally integrable increasing process X* = (X{)¢c0; 0) ON it with a
continuous compensator A* = (A7) c(0; o0)-
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We have a sequence of extensions of stochastic basises
Ble.. eBMeple...

and a sequence of extensions of 2-dimensional processes

[1] [n] [n+1]
X e...e | €| €...
A[1] A["] A[”+1]

t 1te[0;1] t 1te[0;n] t te[0; n+1]

To construct the required objects B*, X*, and A*, we "glue” these
stochastic basises together into stochastic basis

B* = (Q*, F*, P, (ﬁ)te[O;oo))

and "glue” these processes into process

[)':t; } te[0; 00)
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Namely, put:

Q:=R? x [0; 0] x [0; o0] x [0; 1], F:=B(Q),
o =l x (>, 7 =51e)7
i=2

\?El] ® {0, 2}, t € [0; 1],

Fr:={ W5, o0 >, te(l: 2],

ff"gll ® <®7:_21 3"1> RF 1 @40, Q}>*, te(n—1;n, n>3.

\

(for more details about Q and F see Lemma 2.1 in (Borzykh, 2018).
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Next, in view of the lonescu-Tulcea theorem (see e.g. (Shiryaev,
Probability, 2016, vol. 1)) on the measurable space (Q*, F*) there exists a
unique probability measure P*, such that

vneN vBlI e gl pr(gll x ()<) = pl7(Bl).
Further, let w* = (Wi, wy, ..., wy, ...) € Q*. Set

{ x!! (w) t € [0; 1],

X (w*) =
e (&) Xl[n](w[l],wz,...,w,,), te(n—1;n], n>2,

Al () t € [0; 1],

A (W) =
() {A[tn](w[ll,wg,...,wn), te(n—1;n], n>2,

M; (@) = XE (@) — AF (), £ 0,

November 25, 2020
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It can be shown that M* = (M} ).c[0, ) is @ martingale on
(%, F*, P*, (F7)tef0:00)) (for details see (Borzykh, 2018)).

The process A* = (A}):e[o; 0) is @ predictable (by continuity) increasing
process.

Finally, formula (1) is obtained from the relations

lim (X7, A7) = (X%, A%), lim (X7, AD) = (X%, AS).

n—oo n—o0
Law (X3, A%) = Law (X2, A2), neN,

and the fact that almost sure convergence implies weak convergence. [J

Dmitriy Borzykh HSE Locally integrable increasing processes November 25, 2020 24 / 26



Thank you for your attention!
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Possible Applications

A complete description of the class of possible distributions of a random
vector (X3, A%) is not known yet in the locally integrable case. Some
steps in this direction were made by A. A. Gushchin in recent article
(Gushchin, 2018 (b)), but the final answer have not been archived yet. We
believe that our Main Theorem sheds extra light on this problem and can
simplify its solution.

[Gushchin, 2018 (b)] A. A. Gushchin, On possible relations between an
increasing process and its compensator in the non-integrable case, Russian
Mathematical Surveys 73 (2018), no. 5, 928-930.
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Then by Theorem~2.1~(ii) (Gushchin, 2018), there exists a stochastic basis $\mathbb{B}^{[1]} := \bigl(\Omega^{[1]}, \, \mathcal{F}^{[1]}, \, \mathbb{P}^{[1]}, \, (\mathcal{F}^{[1]}_t)_{t \in [0;\,1]}\bigr)$, and an integrable process $(X^{[1]}_t)_{t \in [0; \, 1]}$ on it with a continuous compensator $(A^{[1]}_t)_{t \in [0; \, 1]}$, such that $\Law\left( X^{[1]}_{1}, \, A^{[1]}_{1} \right) = \Law\left( X^{\circ}_{1}, \, A^{\circ}_{1} \right)$.
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Step $n = 2$. Remark that the pair of processes $(X^{\circ}_t)_{t \in [0; \, \infty)}$ and $(A^{\circ}_t)_{t \in [0; \, \infty)}$ and the pair of processes $(X^{[1]}_t)_{t \in [0; \, 1]}$ and $(A^{[1]}_t)_{t \in [0; \, 1]}$ fit the requirements of Extension Lemma. 

\medskip

So, applying this lemma, we build a stochastic basis
\[
  \mathbb{B}^{[2]} := \bigl(\Omega^{[2]}, \, \mathcal{F}^{[2]}, \, \mathbb{P}^{[2]}, \, (\mathcal{F}^{[2]}_t)_{t \in [0;\,2]}\bigr) \text{,}
\]
and an integrable increasing process $(X^{[2]}_t)_{t \in [0; \, 2]}$ with a continuous compensator $(A^{[2]}_t)_{t \in [0; \, 2]}$, satisfying the condition
\[
    \Law\left( X^{[2]}_{2}, \, A^{[2]}_{2} \right) = \Law\left( X^{\circ}_{2}, \, A^{\circ}_{2} \right) \text{.}
\]
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	All the steps starting from the second are performed similarly.
	
	\medskip
	
	Step $n+1$, $n \geq 2$. Remark that the pair of processes $(X^{\circ}_t)_{t \in [0; \, \infty)}$ and $(A^{\circ}_t)_{t \in [0; \, \infty)}$ and the pair of processes $(X^{[n]}_t)_{t \in [0; \, n]}$ and $(A^{[n]}_t)_{t \in [0; \, n]}$ fit the requirements of Extension Lemma. 
	
	\medskip
	
	So, applying this lemma, we build a stochastic basis
	\[
	\mathbb{B}^{[n+1]} := \bigl(\Omega^{[n+1]}, \, \mathcal{F}^{[n+1]}, \, \mathbb{P}^{[n+1]}, \, (\mathcal{F}^{[n+1]}_t)_{t \in [0;\,n+1]}\bigr) \text{,}
	\]
	and an integrable increasing process $(X^{[n+1]}_t)_{t \in [0; \, n+1]}$ with a continuous compensator $(A^{[n+1]}_t)_{t \in [0; \, n+1]}$, satisfying the condition
	\[
	\Law\left( X^{[n+1]}_{n+1}, \, A^{[n+1]}_{n+1} \right) = \Law\left( X^{\circ}_{n+1}, \, A^{\circ}_{n+1} \right) \text{.}
	\]
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Now, we are ready to define the required stochastic basis
\[
\mathbb{B}^{\star} := \left(\Omega^{\star}, \, \mathcal{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathcal{F}^{\star}_t)_{t \in [0; \, \infty)}\right)
\]
and a locally integrable increasing process $X^{\star} = (X^{\star}_t)_{t \in [0; \, \infty)}$ on it with a continuous compensator $A^{\star} = (A^{\star}_t)_{t \in [0; \, \infty)}$.
	
\end{frame}
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We have a sequence of extensions of stochastic basises
\[
	\mathbb{B}^{[1]} \Subset \ldots \Subset \mathbb{B}^{[n]} \Subset \mathbb{B}^{[n+1]}  \Subset  \ldots
\]
and a sequence of extensions of 2-dimensional  processes
\[
	\left[\begin{smallmatrix}X^{[1]}_{t} \\ A^{[1]}_{t}\end{smallmatrix}\right]_{t \in [0; \, 1]} \Subset \ldots \Subset \left[\begin{smallmatrix}X^{[n]}_{t} \\ A^{[n]}_{t}\end{smallmatrix}\right]_{t \in [0; \, n]} \Subset \left[\begin{smallmatrix}X^{[n+1]}_{t} \\ A^{[n+1]}_{t}\end{smallmatrix}\right]_{t \in [0; \, n+1]} \Subset  \ldots
\]

To construct the required objects $\mathbb{B}^{\star}$, $X^{\star}$, and $A^{\star}$, we ''glue'' these stochastic basises together into stochastic basis
\[
\mathbb{B}^{\star} := \left(\Omega^{\star}, \, \mathcal{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathcal{F}^{\star}_t)_{t \in [0; \, \infty)}\right)
\]
and ''glue'' these processes into process
\[
	\left[\begin{smallmatrix}X^{\star}_{t} \\ A^{\star}_{t}\end{smallmatrix}\right]_{t \in [0; \, \infty)} \text{.}
\]
	
\end{frame}
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Namely, put:
\[
\Omega := \mathbb{R}^2_{+} \times [0; \, \infty] \times [0; \, \infty] \times [0; \, 1] \text{, \qquad} \mathcal{F} := \mathcal{B}(\Omega) \text{,} 
\]
\[
    \Omega^{\star} := \Omega^{[1]} \times (\Omega)^{\infty} \text{,\quad\;} \mathcal{F}^{\star} := \mathcal{F}^{[1]} \otimes \bigotimes_{i=2}^{\infty}\mathcal{F} \text{,}
\]
\[
    \mathcal{F}^{\star}_t := \left\{
                          \begin{array}{ll}
                            \bigg.      \mathcal{F}^{[1]}_t \otimes \{\emptyset, \, \Omega\}^{\infty}, & t \in [0; \, 1], \\
                            \bigg.      \mathcal{F}^{[1]}_1 \otimes \mathcal{F}^{}_{t-1}  \otimes  \{\emptyset, \, \Omega\}^{\infty}, & t \in (1; \, 2], \\
                            \bigg.      \mathcal{F}^{[1]}_1 \otimes \left(\bigotimes_{i=2}^{n-1}\mathcal{F}^{}_1\right) \otimes \mathcal{F}^{}_{t - n + 1} \otimes  \{\emptyset, \, \Omega\}^{\infty} , & t \in (n-1; \, n],\;\; n \geq 3.
                          \end{array}
                        \right.
\]
(for more details about $\Omega$ and $\mathcal{F}$ see Lemma~2.1 in (Borzykh, 2018).
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Next, in view of the Ionescu-Tulcea theorem (see e.g. (Shiryaev, Probability, 2016, vol. 1)) on the measurable space $\left(\Omega^{\star} , \, \mathcal{F}^{\star}\right)$ there exists a unique probability measure $\mathbb{P}^{\star}$, such that
\[
    \forall n \in \mathbb{N} \;\;\; \forall B^{[n]} \in \mathcal{F}^{[n]} \, \colon \;\;\; \mathbb{P}^{\star}\bigl(B^{[n]} \times (\Omega)^{\infty}\bigr) = \mathbb{P}^{[n]}\bigl(B^{[n]}\bigr) \text{.}
\]

Further, let $\omega^{\star} = \left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n, \, \ldots\right) \in \Omega^{\star}$. Set
\[
    X^{\star}_t\left(\omega^{\star}\right) := \left\{
                 \begin{array}{ll}
                   X^{[1]}_t\left(\omega^{[1]}\right),                 & t \in [0;\,1], \\
                   X^{[n]}_t\left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n\right), & t \in (n-1;\,n],\;\; n \geq 2,
                 \end{array}
               \right.
\]
\[
    A^{\star}_t\left(\omega^{\star}\right) := \left\{
                 \begin{array}{ll}
                   A^{[1]}_t\left(\omega^{[1]}\right),                 & t \in [0;\,1], \\
                   A^{[n]}_t\left(\omega^{[1]}, \, \omega_2, \, \ldots, \, \omega_n\right), & t \in (n-1;\,n],\;\; n \geq 2,
                 \end{array}
               \right.
\]
\[
    M^{\star}_t\left(\omega^{\star}\right) := X^{\star}_t\left(\omega^{\star}\right) - A^{\star}_t\left(\omega^{\star}\right) , \quad t \geq 0.
\]
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It can be shown that $M^{\star} = (M^{\star}_t)_{t \in [0; \, \infty)}$ is a martingale on $\left(\Omega^{\star}, \, \mathcal{F}^{\star}, \, \mathbb{P}^{\star}, \, (\mathcal{F}^{\star}_t)_{t \in [0; \, \infty)}\right)$ (for details see (Borzykh, 2018)).

\medskip

The process $A^{\star} = (A^{\star}_t)_{t \in [0; \, \infty)}$ is a predictable (by continuity) increasing process.

\medskip

Finally, formula~(\ref{sjn82jz}) is obtained from the relations
\[
    \lim_{n \rightarrow \infty}\left( X^{\star}_{n}, \, A^{\star}_{n} \right) =  \left( X^{\star}_{\infty}, \, A^{\star}_{\infty} \right) \text{, \quad} \lim_{n \rightarrow \infty}\left( X^{\circ}_{n}, \,  A^{\circ}_{n} \right) =  \left( X^{\circ}_{\infty}, \, A^{\circ}_{\infty} \right) \text{,}
\]
\[
    \Law\left( X^{\star}_{n}, \, A^{\star}_{n} \right) = \Law\left( X^{\circ}_{n}, \,  A^{\circ}_{n} \right), \;\; n \in \mathbb{N},
\]
and the fact that almost sure convergence implies weak convergence. $\Box$
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{\Large Thank you for your attention!}
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	\frametitle{Possible Applications}
	
	A complete description of the class of possible distributions of a random vector $(X^{\circ}_{\infty}, \, A^{\circ}_{\infty})$ is not known yet in the locally integrable case. Some steps in this direction were made by A. A. Gushchin in recent article (Gushchin, 2018 (b)), but the final answer have not been archived yet. We believe that our Main Theorem sheds extra light on this problem and can simplify its solution.
	
	\medskip
	
	\textcolor{blue}{[Gushchin, 2018 (b)]} A. A. Gushchin, On possible relations between an increasing process and its compensator in the non-integrable case, Russian Mathematical Surveys 73 (2018), no. 5, 928–930.
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