AI Predicts Behaviour of Quantum Systems

Scientists from HSE University, in collaboration with researchers from the University of Southern California, have developed an algorithm that rapidly and accurately predicts the behaviour of quantum systems, from quantum computers to solar panels. This methodology enabled the simulation of processes in the MoS₂ semiconductor and revealed that the movement of charged particles is influenced not only by the number of defects but also by their location. These defects can either slow down or accelerate charge transport, leading to effects that were previously difficult to account for with standard methods. The study has been published in Proceedings of the National Academy of Sciences (PNAS).
Modern electronics rely on quantum effects. Devices such as semiconductors, LEDs, and solar panels all depend on the behaviour of electrons in materials. Accurately describing these processes is challenging, as their simulation demands immense computing power. Simulating the motion of electrons in a material with thousands of atoms requires supercomputers to perform millions of calculations.
Typically, quantum systems are modelled using the molecular dynamics method, which enables predictions of how atoms and electrons will move over time. However, when electron states change rapidly, standard modelling methods become excessively resource intensive.
Researchers at MIEM HSE solved this problem by leveraging machine learning. The new algorithm analyses small fragments of the material, learns from their local properties, and then predicts the behaviour of the entire system. The scientists studied the two-dimensional semiconductor molybdenum disulfide (MoS₂), a promising material for optoelectronics and photovoltaics. In particular, it can function as the active layer in solar cells. Ideally, molybdenum (Mo) and sulphur (S) atoms form an ordered lattice, but in real materials, the structure is rarely perfect, as defects may occur. Defects are disruptions in the arrangement of atoms. In MoS₂, defects can manifest as vacancies (the absence of sulphur or molybdenum atoms), excess atoms between layers, local displacements, or other deviations from the ideal lattice. Defects can alter the behaviour of electrons: in some cases, they may impair conductivity, while in others, they can impart new properties to the material, such as increasing its sensitivity to light or its ability to conduct charge.
Dongyu Liu
'To understand how defects impact electron movement, we focused on small fragments of the material. The algorithm first analysed the local properties of the system and then predicted the behaviour of the entire structure. It’s similar to learning a language: first, you memorise individual words, and then you begin to understand whole sentences,' says Dongyu Liu, Assistant Professor at MIEM HSE.
It turns out that not only does the number of defects matter, but also their location. Defects can either delay or accelerate the movement of charged particles, creating traps for charge carriers within the semiconductor's band gap. Standard methods struggle to calculate these effects accurately, as the calculations must account for interactions both between defects and with the atoms of the material, which is difficult when using small computational cells. Machine learning helps overcome these dimensional limitations and account for the synergistic effects of multiple defects in the material.
Andrey Vasenko
'Importantly, this method not only speeds up calculations but also facilitates the study of real quantum systems,' explains Andrey Vasenko, Professor at MIEM HSE. 'The results of our research will help bridge the gap between theoretical modelling and experimental studies of materials. We have developed a new approach to studying charge motion in complex systems by combining high-precision computing, molecular dynamics, and machine learning. This method will help investigate materials in which electrons carry energy and information. This is crucial for electronics and energy production.'
See also:
Larger Groups of Students Use AI More Effectively in Learning
Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.
New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip
Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.
Using Two Cryptocurrencies Enhances Volatility Forecasting
Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.
Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions
An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.
Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence
Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.
Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives
An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.
How Colour Affects Pricing: Why Art Collectors Pay More for Blue
Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.
New Method for Describing Graphene Simplifies Analysis of Nanomaterials
An international team, including scientists from HSE University, has proposed a new mathematical method to analyse the structure of graphene. The scientists demonstrated that the characteristics of a graphene lattice can be represented using a three-step random walk model of a particle. This approach allows the lattice to be described more quickly and without cumbersome calculations. The study has been published in Journal of Physics A: Mathematical and Theoretical.
HSE Researchers Assess Creative Industry Losses from Use of GenAI
Speaking at the IPQuorum.Music forum on October 15, Leonid Gokhberg, HSE First Vice Rector, and Daniil Kudrin, an expert at the Centre for Industry and Corporate Projects of HSE ISSEK, presented the findings of the first study in Russia on the economic impact of GenAI on creative professions. The analysis shows that creators’ potential losses could reach one trillion roubles by 2030.
‘Fall into ML Has Firmly Established Itself as a Landmark Event in Russia’s AI Scene’
On October 24–25, 2025, the AI and Digital Science Institute of the HSE Faculty of Computer Science will host the fourth annual Fall into ML 2025 conference at the HSE Cultural Centre. The event is once again supported by its general partner, Sber. The focus this year is on breakthrough research and the future of fundamental AI.


