Adhesive Tape Helps Create Innovative THz Photodetector
It is 10,000 times thinner than a sheet of paper and has been inspired by the discovery made by Nobel Prize winners Andre Geim and Konstantin Novoselov.
An international team of researchers, including scientists at HSE University and Moscow Pedagogical State University (MPGU), has developed a novel photodetector composed of a thin superconducting film, capable of detecting weak terahertz (THz) radiation. This discovery holds promise for studying objects in space, developing wireless broadband communication systems, and making advancements in spectroscopy. The study has been published in Nano Letters.
The study was conducted with support from the Russian Science Foundation (RSF), Projects No. 21-72-10117 and No. 23-72-00014.
Superconducting Hot-Electron Bolometers are a type of highly sensitive photodetectors capable of capturing low-intensity electromagnetic radiation in the terahertz range. These detectors find application in astronomy for studying space objects such as stars, galaxies, and cosmic microwave radiation. Additionally, they are sought after in security and medical diagnostic systems, as they facilitate the visualisation of concealed objects with resolutions reaching hundreds of micrometres.
When the photosensitive element of such a detector absorbs electromagnetic radiation, it undergoes local heating, leading to the formation of thermalised electrons with kinetic energy surpassing the material's average electron energy. The emergence of overheated electrons causes a shift in the resistance of the photosensitive element, thereby generating an electrical signal that can be measured.
Current commercial superconducting bolometers employing overheated electrons are manufactured using films produced through magnetron sputtering techniques. This technology presently lacks the capability to produce materials thinner than a few nanometres, whereas the detector's performance is directly influenced by the deposition quality.
An international team of researchers, including scientists at MIEM HSE, have proposed using a thinner material and an alternative method for applying the detector’s photosensitive element. Taking inspiration from Nobel Prize winners Andre Geim and Konstantin Novoselov, who produced graphene by repeatedly cleaving graphite with adhesive tape, the study authors successfully obtained ultrathin films of niobium diselenide (NbSe2) by delaminating atomic layers from the material using polymer adhesive tape.
Research Fellow, MIEM HSE
We worked as part of a large international collaboration consisting of specialists in photodetectors and experts in two-dimensional materials. We pooled our expertise to develop a sensitive and compact terahertz radiation detector with a thickness of just a few atomic layers of niobium diselenide, which is 10,000 times thinner than a standard sheet of office paper. Furthermore, this technology enables us to obtain materials with an optimal structure. It is easy to apply and does not require specialised equipment.
The authors also investigated the reaction of NbSe2 to THz radiation. They examined how the material heats up upon exposure to an electromagnetic wave and how the detector's properties vary depending on its environment—the substrate and electrodes—given that two-dimensional materials are sensitive to their surroundings. The scientists have also identified the mechanisms that constrain the sensitivity and speed of the detector.
The scientists emphasise that their pioneering work to develop a bolometric THz radiation detector demonstrates the potential for such a device to eventually surpass existing commercial solutions.
Doctoral student and Research Fellow, MIEM HSE
We have demonstrated that using the proposed technology makes it possible to manufacture a bolometric THz radiation detector with characteristics similar to those of existing commercial counterparts.
See also:
Script Differences Hinder Language Switching in Bilinguals
Researchers at the HSE Centre for Language and Brain used eye-tracking to examine how bilinguals switch between languages in response to context shifts. Script differences were found to slow down this process. When letters appear unfamiliar—such as the Latin alphabet in a Russian-language text—the brain does not immediately switch to the other language, even when the person is aware they are in a bilingual setting. The article has been published in Bilingualism: Language and Cognition.
HSE Experts Highlight Factors Influencing EV Market Growth
According to estimates from HSE University, Moscow leads in the number of charging stations for electric vehicles in Russia, while Nizhny Novgorod ranks first in terms of charging station coverage, with 11.23 electric vehicles per charging station, compared to 14.41 in Moscow. The lack of charging infrastructure is one of the key factors limiting the growth of the electric vehicle market. This is stated in the study titled ‘Socio-Economic Aspects of Introducing Electric Vehicles in Commercial Transportation’ conducted by experts from the Institute of Transport Economics and Transport Policy Studies at HSE University.
Machine Learning Links Two New Genes to Ischemic Stroke
A team of scientists from HSE University and the Kurchatov Institute used machine learning methods to investigate genetic predisposition to stroke. Their analysis of the genomes of over 5,000 people identified 131 genes linked to the risk of ischemic stroke. For two of these genes, the association was found for the first time. The paper has been published in PeerJ Computer Science.
First Digital Adult Reading Test Available on RuStore
HSE University's Centre for Language and Brain has developed the first standardised tool for assessing Russian reading skills in adults—the LexiMetr-A test. The test is now available digitally on the RuStore platform. This application allows for a quick and effective diagnosis of reading disorders, including dyslexia, in people aged 18 and older.
Low-Carbon Exports Reduce CO2 Emissions
Researchers at the HSE Faculty of Economic Sciences and the Federal Research Centre of Coal and Coal Chemistry have found that exporting low-carbon goods contributes to a better environment in Russian regions and helps them reduce greenhouse gas emissions. The study results have been published in R-Economy.
Russian Scientists Assess Dangers of Internal Waves During Underwater Volcanic Eruptions
Mathematicians at HSE University in Nizhny Novgorod and the A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences studied internal waves generated in the ocean after the explosive eruption of an underwater volcano. The researchers calculated how the waves vary depending on ocean depth and the radius of the explosion source. It turns out that the strongest wave in the first group does not arrive immediately, but after a significant delay. This data can help predict the consequences of eruptions and enable advance preparation for potential threats. The article has been published in Natural Hazards. The research was carried out with support from the Russian Science Foundation (link in Russian).
Centre for Language and Brain Begins Cooperation with Academy of Sciences of Sakha Republic
HSE University's Centre for Language and Brain and the Academy of Sciences of the Republic of Sakha (Yakutia) have signed a partnership agreement, opening up new opportunities for research on the region's understudied languages and bilingualism. Thanks to modern methods, such as eye tracking and neuroimaging, scientists will be able to answer questions about how bilingualism works at the brain level.
How the Brain Responds to Prices: Scientists Discover Neural Marker for Price Perception
Russian scientists have discovered how the brain makes purchasing decisions. Using electroencephalography (EEG) and magnetoencephalography (MEG), researchers found that the brain responds almost instantly when a product's price deviates from expectations. This response engages brain regions involved in evaluating rewards and learning from past decisions. Thus, perceiving a product's value is not merely a conscious choice but also a function of automatic cognitive mechanisms. The results have been published in Frontiers in Human Neuroscience.
AI Predicts Behaviour of Quantum Systems
Scientists from HSE University, in collaboration with researchers from the University of Southern California, have developed an algorithm that rapidly and accurately predicts the behaviour of quantum systems, from quantum computers to solar panels. This methodology enabled the simulation of processes in the MoS₂ semiconductor and revealed that the movement of charged particles is influenced not only by the number of defects but also by their location. These defects can either slow down or accelerate charge transport, leading to effects that were previously difficult to account for with standard methods. The study has been published in Proceedings of the National Academy of Sciences (PNAS).
Electrical Brain Stimulation Helps Memorise New Words
A team of researchers at HSE University, in collaboration with scientists from Russian and foreign universities, has investigated the impact of electrical brain stimulation on learning new words. The experiment shows that direct current stimulation of language centres—Broca's and Wernicke's areas—can improve and speed up the memorisation of new words. The findings have been published in Neurobiology of Learning and Memory.